Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

Two 17-hydroxy-9(10 \rightarrow 5)-abeo-estr-4-ene-3,10-diones

Tullio Pilati* and Gianluigi Casalone

CNR - Centro per lo Studio delle Relazioni fra Struttura e Reattività Chimica, Via Golgi 19, 20133 Milano, Italy
Correspondence e-mail: pila@csrsrc.mi.cnr.it

Received 2 January 2001
Accepted 24 January 2001
($5 S, 9 S, 17 S$)-17-Hydroxy-9(10 $\rightarrow 5$)-abeo-estr-4-ene-3,10-dione, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$, (II), and ($5 R, 9 R, 17 S$)-17-hydroxy- $9(10 \rightarrow 5)$-abeo-estr-4-ene-3,10-dione, $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$, (III), are equimolecular products of the $\mathrm{Fe}^{\mathrm{II}}$-induced transposition of 10β-hydro-peroxy- 17β-hydroxyestr-4-en-3-one, (I). With respect to reagent molecules, the configuration at C 9 is retained for (II) while it is inverted in (III). The conformations of the fiveand six-membered rings are compared.

Comment

The title compounds were synthesized and crystallized according to the procedure described by Canonica et al. (1987) for similar steroids (see Scheme below). The present crystallographic study was undertaken in order to determine the configuration of the two compounds at the C 9 atom.

Both structures present no unusual bond lengths and angles. The two molecules are shown in Figs. 1 and 2; the numbering scheme derives from estrene. In (II), the two H atoms bonded at C 8 and C 9 are anti, as in the parent compound, while in (III) they are syn. In (II), ring $A(\mathrm{C} 1-\mathrm{C} 5 / \mathrm{C} 10$, see Scheme) presents a $B_{2,5}$ conformation [according to the notation of Boeyens (1978)], with $Q_{\text {tot }}=0.605(2) \AA, \varphi_{2}=56.1(2)^{\circ}$ and $\theta_{2}=98.7(2)^{\circ}$ [Cremer \& Pople (1975), calculated following Nardelli (1983)], ring $C(\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 11-\mathrm{C} 14)$ has a regular chair conformation $\left[Q_{\text {tot }}=0.580(2) \AA, \varphi_{2}=-99.0(3)^{\circ}\right.$ and $\left.\theta_{2}=3.8(2)^{\circ}\right]$, as found in similar steroids such as GEMYUS $[(5 S)-9(10 \rightarrow 5)$ -abeo-1-estrene-3,10,17-trione; Piniella \& Rius, 1988], ring B (C5-C9) shows a ${ }^{5} T_{4}$ conformation $\left[Q_{\text {tot }}=0.444\right.$ (2) \AA and φ_{2} $\left.=131.6(2)^{\circ}\right]$, as in GEMYUS, and finally, ring $D(\mathrm{C} 13-\mathrm{C} 17)$ has a distorted envelope $\left(E_{1}\right)$ conformation $\left[Q_{\text {tot }}=0.474\right.$ (2) \AA and $\left.\varphi_{2}=-172.3(2)^{\circ}\right]$. In (III), only ring $D\left[Q_{\text {tot }}=0.462\right.$ (3) \AA and $\left.\varphi_{2}=-175.2(4)^{\circ}\right]$ has the same conformation found in (II). In all other cases, there are strong differences: ring A presents a conformation between ${ }^{4} T_{2}$ and ${ }^{1,4} B\left[Q_{\text {tot }}=0.657\right.$ (3) $\AA, \varphi_{2}=$ $20.2(2)^{\circ}$ and $\left.\theta_{2}=92.5(3)^{\circ}\right]$, ring C has a chair conformation noticeably distorted in the ${ }^{5} E$ direction $\left[Q_{\text {tot }}=0.507(2) \AA\right.$, $\varphi_{2}=-125.5(7)^{\circ}$ and $\left.\theta_{2}=28.6(3)^{\circ}\right]$ and ring B shows a distorted
${ }^{1} T_{2}$ conformation $\left[Q_{\text {tot }}=0.415\right.$ (3) \AA and $\left.\varphi_{2}=11.8(4)^{\circ}\right]$. Most likely these conformational differences are mainly due to the

(I)

(II)

(III)
intramolecular O19…H9 interaction [2.42 (3) \AA] , which is present in (III), but not in (II). The main packing interaction, both in (II) and (III), is the $\mathrm{H} 21 \cdots \mathrm{O} 20^{\mathrm{i}}$ hydrogen bond, where (i) is $-\frac{1}{2}-x,-y, z-\frac{1}{2}$ for (II), and $-x, y-\frac{1}{2}, \frac{1}{2}-z$ for (III);

Figure 1
ORTEPIII (Burnett \& Johnson, 1996) projection of (II). Ellipsoids are at the 50% probability level and H atoms are not to scale.

ORTEPIII (Burnett \& Johnson, 1996) projection of (III). Ellipsoids are at the 50% probability level and H atoms are not to scale.
the distances $\mathrm{O} \cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}$, and the corresponding $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}$ angle measure 2.863 (2), 2.05 (2) \AA and 174 (2) ${ }^{\circ}$ for (II), and 2.862 (3), 2.03 (4) \AA and 150 (4) ${ }^{\circ}$ for (III).

Experimental

The title compounds were synthesized and crystallized according to the procedure described by Canonica et al. (1987) for similar steroids.

Compound (II)

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=290.39$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.5843$ (5) \AA 。
$b=10.4040$ (7) \AA
$c=22.3443(12) \AA$
$V=1530.65(18) \AA^{3}$
$Z=4$
$D_{x}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker $P 4$ diffractometer

$2 \theta / \omega$ scans

5088 measured reflections
2577 independent reflections
2216 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=30.0^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.086$
$S=0.979$
2577 reflections
295 parameters
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0474 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$

Compound (III)

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=290.39$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.6278$ (5) \AA 。
$b=11.1491$ (9) \AA
$c=21.1609(19) \AA$
$V=1563.7(2) \AA^{3}$
$Z=4$
$D_{x}=1.234 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 52 reflections
$\theta=5.17-14.75^{\circ}$
$\mu=0.084 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Cubic, colourless
$0.32 \times 0.30 \times 0.30 \mathrm{~mm}$

$$
h=0 \rightarrow 9
$$

$$
k=0 \rightarrow 14
$$

$$
l=0 \rightarrow 31
$$

3 standard reflections every 197 reflections intensity decay: none
$(\Delta / \sigma)_{\max }=0.01$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\text {A }}{ }^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.0151 (19)
Absolute structure: based on the reagents configuration

Data collection

Bruker P4 diffractometer $\quad h=0 \rightarrow 8$
$2 \theta / \omega$ scans $\quad k=0 \rightarrow 14$
4127 measured reflections $\quad l=0 \rightarrow 27$
2094 independent reflections
1400 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.092$
$S=0.960$
2094 reflections
295 parameters
All H-atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0478 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.011 (2)
Absolute structure: based on the reagents configuration

Refined $\mathrm{C}-\mathrm{H}$ distances are in the ranges 0.90 (2)-1.02 (2) \AA and 0.91 (3) -1.08 (3) \AA for (I) and (II), respectively.

For both compounds, data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97 and PARSTCIF (Nardelli, 1991) for compound (II) and SHELXL97 for compound (III).

We thank Professor B. Danieli and G. Lesma for the suggestion of the work and the gift of suitable crystals.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1501). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
Bruker (1997). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Canonica, L., Danieli, B., Lesma, G. \& Palmisano, G. (1987). Helv. Chim. Acta, 70, 701-716.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991). PARSTCIF. University of Parma, Italy.
Piniella, J. F. \& Rius, J. (1988). Acta Cryst. C44, 699-701.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

